Heteromultimeric potassium channels formed by members of the Kv2 subfamily.
نویسندگان
چکیده
Four alpha-subunits are thought to coassemble and form a voltage-dependent potassium (Kv) channel. Kv alpha-subunits belong to one of four major subfamilies (Kv1, Kv2, Kv3, Kv4). Within a subfamily up to eight different genetic isotypes exist (e.g., Kv1.1, Kv1.2). Different isotypes within the Kv1 or Kv3 subfamily coassemble. It is not known, however, whether the only two members of the vertebrate Kv2 subfamily identified thus far, Kv2.1 and Kv2.2, heteromultimerize. This might account for the lack of detection of heteromultimeric Kv2 channels in situ despite the coexpression of Kv2.1 and Kv2.2 mRNAs within the same cell. To probe whether Kv2 isotypes can form heteromultimers, we developed a dominant-negative mutant Kv2.2 subunit to act as a molecular poison of Kv2 subunit-containing channels. The dominant-negative Kv2.2 suppresses formation of functional channels when it is coexpressed in oocytes with either wild-type Kv2.2 or Kv2.1 subunits. These results indicate that Kv2.1 and Kv2.2 subunits are capable of heteromultimerization. Thus, in native cells either Kv2.1 and Kv2.2 subunits are targeted at an early stage to different biosynthetic compartments or heteromultimerization otherwise is inhibited.
منابع مشابه
Subunit assembly and domain analysis of electrically silent K+ channel alpha-subunits of the rat Kv9 subfamily.
Alpha-subunits of the voltage-gated potassium channel (Kv) subfamily Kv9 show no channel activity after homomultimeric expression in heterologous expression systems. This report shows that heteromultimeric expression of rKv9.1 and rKv9.3 specifically suppresses the currents mediated by alpha-subunits of the Kv2 and Kv3 subfamilies but does not affect currents mediated by alpha-subunits of the K...
متن کاملAmino acids in the pore region of Kv1 potassium channels dictate cell-surface protein levels: a possible trafficking code in the Kv1 subfamily.
Kv1.1 and Kv1.4 potassium channels have different pore region determinants that were found to affect their cell-surface levels positively and negatively [Zhu, Watanabe, Gomez and Thornhill (2001) J. Biol. Chem. 276, 39419-39427; Zhu, Watanabe, Gomez and Thornhill (2003) J. Biol. Chem. 278, 25558-25567; Zhu, Watanabe, Gomez and Thornhill (2003) Biochem. J. 375, 761-768]. In the present study, we...
متن کاملNAB Domain Is Essential for the Subunit Assembly of both α–α and α–β Complexes of Shaker-like Potassium Channels
1994). The regions responsible for subfamily-specific There are at least five subfamilies of Shaker-like K assembly of heteromultimeric channels were localized channels. The diverse functions of K channels are to the cytoplasmic N-terminal domain. This was deterthought to be further modulated by hydrophilic b submined by coexpression of mutated Kv1 and Kv2 chanunits. Here we report that Kvb1 in...
متن کاملConserved negative charges in the N-terminal tetramerization domain mediate efficient assembly of Kv2.1 and Kv2.1/Kv6.4 channels.
Voltage-gated potassium (Kv) channels are transmembrane tetramers of individual alpha-subunits. Eight different Shaker-related Kv subfamilies have been identified in which the tetramerization domain T1, located on the intracellular N terminus, facilitates and controls the assembly of both homo- and heterotetrameric channels. Only the Kv2 alpha-subunits are able to form heterotetramers with memb...
متن کاملStructural determinants of the regulation of the voltage-gated potassium channel Kv2.1 by the modulatory α-subunit Kv9.3.
Voltage-gated potassium (Kv) channels containing alpha-subunits of the Kv2 subfamily mediate delayed rectifier currents in excitable cells. Channels formed by Kv2.1 alpha-subunits inactivate from open- and closed states with both forms of inactivation serving different physiological functions. Here we show that open- and closed-state inactivation of Kv2.1 can be distinguished by the sensitivity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 23 شماره
صفحات -
تاریخ انتشار 1998